Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
J Colloid Interface Sci ; 669: 383-392, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38718591

ABSTRACT

Phase junctions exhibit great potential in photocatalytic energy conversion, yet the narrow light response region and inefficient charge transfer limit their photocatalytic performance. Herein, an anatase/rutile phase junction modified by plasmonic TiN and oxygen vacancies (TiN/(A-R-TiO2-Ov)) is prepared through an in-situ thermal transformation from TiN for efficient photothermal-assisted photocatalytic hydrogen production for the first time. The content of TiN, oxygen vacancies, and phase components in TiN/(A-R-TiO2-Ov) hybrids can be well-adjusted by tuning the heating time. The as-prepared photocatalysts display a large specific area and wide light absorption due to the synergistic effect of plasmonic excitation, oxygen vacancies, and bandgap excitations. Meanwhile, the multi-interfaces between TiN, anatase, and rutile provide built-in electric fields for efficient separation of photoinduced carriers and hot electron injection via ohmic contact and type-Ⅱ band arrangement. As a result, the TiN/(A-R-TiO2-Ov) photocatalyst shows an excellent photocatalytic hydrogen generation rate of 15.07 mmol/g/h, which is 20.6 times higher than that of titanium dioxide P25. Moreover, temperature-dependent photocatalytic tests reveal that the excellent photothermal conversion caused by plasmonic heating and crystal lattice vibrations in TiN/(A-R-TiO2-Ov) has about 25 % enhancement in photocatalysis (18.84 mmol/g/h). This work provides new inspiration for developing high-performance photocatalysts by optimizing charge transfer and photothermal conversion.

2.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(5): 159497, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38649009

ABSTRACT

BACKGROUNDS: Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent chronic liver diseases. The leaves of Broussonetia papyrifera contain a large number of flavonoids, which have a variety of biological functions. METHODS: In vitro experiments, free fatty acids were used to stimulate HepG2 cells. NAFLD model was established in vivo in mice fed with high fat diet (HFD) or intraperitoneally injected with Tyloxapol (Ty). At the same time, Total flavonoids of Broussonetia papyrifera (TFBP) was used to interfere with HepG2 cells or mice. RESULTS: The results showed that TFBP significantly decreased the lipid accumulation induced by oil acid (OA) with palmitic acid (PA) in HepG2 cells. TFBP decreased the total cholesterol (TC), the triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and increased high-density lipoprotein cholesterol (HDLC) in serum. TFBP could also effectively inhibit the generation of reactive oxygen species (ROS) and restrained the level of myeloperoxidase (MPO), and enhance the activity of superoxide dismutase (SOD) to alleviate the injury from oxidative stress in the liver. Additionally, TFBP activated nuclear factor erythroid-2-related factor 2 (Nrf2) pathway to increasing the phosphorylation of AMP-activated protein kinase (AMPK). Meanwhile, protein levels of mTORC signaling pathway were evidently restrained with the treatment of TFBP. CONCLUSION: Our experiments proved that TFBP has the therapeutic effect in NAFLD, and the activation of Nrf2 and AMPK signaling pathways should make sense.


Subject(s)
AMP-Activated Protein Kinases , Broussonetia , Flavonoids , NF-E2-Related Factor 2 , Non-alcoholic Fatty Liver Disease , Signal Transduction , TOR Serine-Threonine Kinases , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Animals , NF-E2-Related Factor 2/metabolism , Humans , Flavonoids/pharmacology , Signal Transduction/drug effects , Mice , Broussonetia/chemistry , Hep G2 Cells , AMP-Activated Protein Kinases/metabolism , TOR Serine-Threonine Kinases/metabolism , Male , Mice, Inbred C57BL , Lipid Metabolism/drug effects , Reactive Oxygen Species/metabolism , Diet, High-Fat/adverse effects
3.
Aging (Albany NY) ; 16(8): 7060-7072, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38656878

ABSTRACT

BACKGROUND: It is reported that the incidence rate and mortality of lung cancer are very high. Therefore, early diagnosis and identification of specific biomarkers are crucial for the clinical treatment of lung cancer. This study aims to comprehensively investigate the prognostic significance of KRT6A in human lung cancer. METHODS: The GEO2R online tool was utilized to analyze the differential expression of mRNA between lung carcinoma tissues and radioresistant tissues in the GSE73095 and GSE197236 datasets. DAVID database was used to perform GO and KEGG enrichment analyses on target genes. The Kaplan-Meier plotter tool was used to analyze the impact of key messenger ribonucleic acid on the survival status of lung cancer. In addition, quantitative real-time polymerase chain reaction (qPCR) was used to investigate the impact of key genes on the phenotype of lung cancer cells. After the knockout, we conducted cell migration and CCK-8 experiments to detect their effects on cell proliferation and invasion. RESULTS: 40 differentially expressed genes (DEGs) were chosen from GSE73095 and 118 DEGs were chosen from GSE197236. Kaplan-Meier map analysis showed that the overall cancer survival rate of the high-expression KRT6A group was higher than that of the low-expression group (P < 0.05). Besides, cell experiments have shown that when the KRT6A gene is downregulated, the proliferation and invasion ability of lung cancer cells is weakened. CONCLUSIONS: Our research concluded that KRT6A may take part in the radioresistance and progression of lung cancer and can be a potential biomarker for lung cancer patients.


Subject(s)
Gene Expression Regulation, Neoplastic , Keratin-6 , Lung Neoplasms , Neoplasm Invasiveness , Radiation Tolerance , Signal Transduction , Tumor Suppressor Protein p53 , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Keratin-6/genetics , Keratin-6/metabolism , Radiation Tolerance/genetics , Neoplasm Invasiveness/genetics , Signal Transduction/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Cell Movement/genetics , Cell Proliferation/genetics , Cell Line, Tumor , Prognosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Neoplasm Metastasis
4.
Front Endocrinol (Lausanne) ; 15: 1338077, 2024.
Article in English | MEDLINE | ID: mdl-38686206

ABSTRACT

Background: Stroke is a devastating global health issue, with high mortality and disability rates. The increasing prevalence of male infertility among reproductive-aged men has become a growing concern worldwide. However, the relationship between male infertility and stroke incidence remains uncertain. This study aimed to address this knowledge gap by employing a Mendelian randomization (MR) approach. Method: Utilizing genetic instrumental variables derived from a genome-wide association study (GWAS) on male infertility and stroke, a two-sample MR design was implemented. Five different analysis methods, with inverse-variance weighted as the primary approach, were used to examine the genetic causal associations between male infertility and various stroke subtypes. Heterogeneity analysis, pleiotropy tests, and leave-one-out validation were conducted to assess heterogeneity, evaluate pleiotropy, and ensure the robustness of the findings. Result: The results indicate a potential lower risk of small vessel stroke associated with male infertility (odds ratio, 95% confidence interval: 0.82, 0.68 to 0.99, p=0.044), although no significant impact on other stroke subtypes was observed. The study exhibited low heterogeneity and no apparent pleiotropy; however, the stability of the results was not optimal. Conclusion: Male infertility might potentially confer a protective effect against small vessel stroke risk. Caution is warranted due to potential confounding factors. Additional studies are necessary to confirm these findings and provide further validation.


Subject(s)
Genome-Wide Association Study , Infertility, Male , Mendelian Randomization Analysis , Stroke , Humans , Male , Infertility, Male/genetics , Infertility, Male/epidemiology , Stroke/genetics , Stroke/epidemiology , Polymorphism, Single Nucleotide , Risk Factors , Genetic Predisposition to Disease
5.
J Phys Condens Matter ; 36(32)2024 May 10.
Article in English | MEDLINE | ID: mdl-38670080

ABSTRACT

Topological phases in kagome systems have garnered considerable interest since the introduction of the colloidal kagome lattice. Our study employs first-principle calculations and symmetry analysis to predict the existence of ideal type-I, III nodal rings (NRs), type-I, III quadratic nodal points (QNPs), and Dirac valley phonons (DVPs) in a collection of two-dimensional (2D) kagome lattices M2C3(M = As, Bi, Cd, Hg, P, Sb, Zn). Specifically, the Dirac valley points (DVPs) can be observed at two inequivalent valleys with Berry phases of +πand-π, connected by edge arcs along the zigzag and armchair directions. Additionally, the QNP is pinned at the Γ point, and two edge states emerge from its projections. Notably, these kagome lattices also exhibit ideal type-I and III nodal rings protected by time inversion and spatial inversion symmetries. Our work examines the various categories of nodal points and nodal ring phonons within the 2D kagome systems and presents a selection of ideal candidates for investigating topological phonons in bosonic systems.

6.
Biosens Bioelectron ; 255: 116256, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38555772

ABSTRACT

Growing three-dimensional (3D) metal organic frameworks (MOFs) via heterogeneous epitaxial growth on metal hydroxide arrays are effective for constructing electrochemical sensor. However, the growth of MOFs is difficult to control, resulting in thick and irregular morphologies and even damage the metal hydroxide template. In this work, Cu3(HHTP)2 (HHTP = 2, 3, 6, 7, 10, 11-hexahydroxytriphenylene) films with controllable thickness and morphology were successfully prepared on Cu(OH)2 nanowire arrays (NWAs) through layer-by-layer (LBL) growth method. We have discovered that the LBL cycle and the reaction solvent composition are crucial for growing homogenous MOF thin films. The Cu3(HHTP)2 based ascorbic acid (AA) sensor, fabricated in ethanol within 10 LBL cycles, generated an ultrahigh sensitivity of 821.64 µA mM-1 cm-2 in the range of 6-981.41 µM, a low detection limit of 60 nM as well as the great selectivity, stability and reproducibility. Moreover, the relative deviation for AA detection in two fruit juices were 3.22 % and 3.71 %, and the test result for human sweat fall within the normal AA concentration range, verifying the feasibility of as-prepared sensor for practical application.


Subject(s)
Biosensing Techniques , Metal-Organic Frameworks , Nanowires , Humans , Reproducibility of Results , Ascorbic Acid , Hydroxides
7.
HardwareX ; 17: e00508, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38327674

ABSTRACT

We present the design of a low-cost, portable telecentric digital holographic microscope (P-TDHM) that utilizes off-the-shelf components. We describe the system's hardware and software elements and evaluate its performance by imaging samples ranging from nano-printed targets to live HeLa cells, HEK293 cells, and Dolichospermum via both in-line and off-axis modes. Our results demonstrate that the system can acquire high quality quantitative phase images with nanometer axial and sub-micron lateral resolution in a small form factor, making it a promising candidate for resource-limited settings and remote locations. Our design represents a significant step forward in making telecentric digital holographic microscopy accessible and affordable to the broader community.

8.
Acad Radiol ; 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38220569

ABSTRACT

RATIONALE AND OBJECTIVES: Although both Multiple system atrophy (MSA) and Parkinson's disease (PD) belong to alpha-synucleinopathy, they have divergent clinical courses and prognoses. The degeneration of white matter has a considerable impact on cognitive performance, yet it is uncertain how PD and MSA affect its functioning in a similar or different manner. METHODS: In this study, a total of 116 individuals (37 PD with mild cognitive impairment (PD-MCI), 37 MSA (parkinsonian variant) with mild cognitive impairment (MSA-MCI), and 42 healthy controls) underwent diffusion tensor imaging (DTI) and cognitive assessment. Utilizing probabilistic fiber tracking, association fibers, projection fibers, and thalamic fibers were reconstructed. Subsequently, regression, support vector machine, and SHAP (Shapley Addictive exPlanations) analyzes were conducted to evaluate the association between microstructural diffusion metrics and multiple cognitive domains, thus determining the white matter predictors of MCI. RESULTS: MSA-MCI patients exhibited distinct white matter impairment extending to the middle cerebellar peduncle, corticospinal tract, and cingulum bundle. Furthermore, the fractional anisotropy (FA) and mean diffusivity (MD)values of the right anterior thalamic radiation were significantly associated with global efficiency (FA: B = 0.69, P < 0.001, VIF = 1.31; MD: B = -0.53, P = 0.02, VIF = 2.50). The diffusion metrics of white matter between PD-MCI and MSA-MCI proved to be an effective predictor of the MCI, with an accuracy of 0.73 (P < 0.01), and the most predictive factor being the MD of the anterior thalamic radiation. CONCLUSIONS: Our results demonstrated that MSA-MCI had a more noticeable deterioration in white matter, which potentially linked to various cognitive domain connections. Diffusion MRI could be a useful tool in comprehending the neurological basis of cognitive impairment in Parkinsonian disorders.

9.
Plant Dis ; 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38173259

ABSTRACT

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a serious threat to wheat (Triticum aestivum L.) production. Narrow genetic basis of common wheat boosted the demand for diversified donors against powdery mildew. Aegilops tauschii Coss (2n = 2x = DD) and emmer wheat (2n = 4x = AABB), as the ancestor species of common wheat, are important gene donors for genetic improvement of common wheat. In this study, a total of 71 Ae. tauschii Coss and 161 emmer wheat accessions were firstly evaluated their powdery mildew resistance using the Bgt isolate E09. Thirty-three Ae. tauschii Coss (46.5%) and 108 emmer wheat accessions (67.1%) were resistant. Then, all these accessions were tested by the diagnostic markers for 21 known Pm genes. The results showed that Pm2 alleles were detected in all the 71 Ae. tauschii Coss and only Pm4 alleles were detected in the 20 of 161 emmer wheat accessions. After haplotype analysis, we identified four Pm4 alleles (Pm4a, Pm4b, Pm4d and Pm4f) in the emmer wheat accessions and three Pm2 alleles (Pm2d, Pm2e and Pm2g) in the Ae. tauschii Coss. Further resistant spectrum analysis indicated that these resistance accessions displayed different resistance reactions to different Bgt isolates, implying they may have other Pm genes apart from Pm2 and/or Pm4 alleles. Notably, a new Pm2 allele Pm2S was identified in the Ae. tauschii Coss, which contained a 64 bp deletion in the first exon and formed a new termination site at the 513th triplet of the shifted reading frame compared to reported Pm2 alleles. The phylogenetic tree of Pm2S showed that the kinship of Pm2S was closed to Pm2h. To efficiently and accurately detect Pm2S and distinguish with other Pm2 alleles in Ae. tauschii Coss background, a diagnostic marker YTU-QS-3 was developed and verified its effectiveness. This study provided valuable Pm alleles and enriched the genetic diversity of the powdery mildew resistance in wheat improvement.

10.
Commun Biol ; 7(1): 25, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38182874

ABSTRACT

Degradation of unliganded androgen receptor (AR) in prostate cancer cells can be prevented by proteasome inhibition, but this is associated with only modest increases in polyubiquitylated AR. An inhibitor (VLX1570) of the deubiquitylases associated with the proteasome did not increase ubiquitylation of unliganded AR, indicating that AR is not targeted by these deubiquitylases. We then identified a series of AR ubiquitylation sites, including a not previously identified site at K911, as well as methylation sites and previously identified phosphorylation sites. Mutagenesis of K911 increases AR stability, chromatin binding, and transcriptional activity. We further found that K313, a previously reported ubiquitylation site, could also be methylated and acetylated. Mutagenesis of K313, in combination with K318, increases AR transcriptional activity, indicating that distinct posttranslational modifications at K313 differentially regulate AR activity. Together these studies expand the spectrum of AR posttranslational modifications, and indicate that the K911 site may regulate AR turnover on chromatin.


Subject(s)
Proteasome Endopeptidase Complex , Receptors, Androgen , Male , Humans , Receptors, Androgen/genetics , Ubiquitination , Protein Processing, Post-Translational , Chromatin/genetics
11.
Phys Chem Chem Phys ; 26(5): 4716-4723, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38251958

ABSTRACT

Skyrmioniums, known for their unique transport and regulatory properties, are emerging as potential cornerstones for future data storage systems. However, the stability of skyrmionium movement faces considerable challenges due to the skyrmion Hall effect, which is induced by deformation. In response, our research introduces an innovative solution: we utilized micro-magnetic simulations to create a sandwiched trilayer nanowire structure augmented with a stray magnetic field. This combination effectively guides the skyrmionium within the ferromagnetic (FM) layer. Our empirical investigations reveal that the use of a stray magnetic field not only reduces the size of the skyrmionium but also amplifies its stability. This dual-effect proficiently mitigates the deformation of skyrmionium movement and boosts their thermal stability. We find these positive outcomes are most pronounced at a particular intensity of the stray magnetic field. Importantly, the required stray magnetic field can be generated using a heavy metal (HM1) layer of suitable thickness, rendering the practical application of this approach plausible in real-world experiments. Additionally, we analyze the functioning mechanism based on the Landau-Lifshitz-Gilbert (LLG) equation and energy variation. We also develop a deep spiking neural network (DSNN), which achieves a remarkable recognition accuracy of 97%. This achievement is realized through supervised learning via the spike timing dependent plasticity rule (STDP), considering the nanostructure as an artificial synapse device that corresponds to the electrical properties of the nanostructure. In conclusion, our study provides invaluable insights for the design of innovative information storage devices utilizing skyrmionium technology. By tackling the issues presented by the skyrmion Hall effect, we outline a feasible route for the practical application of this advanced technology. Our research, therefore, serves as a robust platform for continued investigations in this field.

12.
J Prosthodont ; 33(3): 221-230, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37302066

ABSTRACT

PURPOSE: To assess the clinical performance of screw-retained, ceramic-veneered, monolithic zirconia partial implant-supported fixed dental prostheses (ISFDP) over 5-10 years and to evaluate implant- and prosthesis-related factors influencing treatment failure and complications. MATERIALS AND METHODS: Partially edentulous patients treated with screw-retained all-ceramic ISFDPs with 2-4 prosthetic units with a documented follow-up of ≥5 years after implant loading were included in this retrospective study. The outcomes analyzed included implant/prosthesis failure and biological/technical complications. Possible risk factors were identified using the mixed effects Cox regression analysis. RESULTS: A screened sample of 171 participants with 208 prostheses (95% of the restorations were splinted crowns without a pontic) supported by 451 dental implants were enrolled in this study. The mean follow-up duration after prosthesis delivery was 82.4 ±17.2 months. By the end of the follow-up period, 431 (95.57%) of the 451 implants remained functional at the implant level. At the prosthesis level, 185 (88.94%) of the 208 partial ISFDPs remained functional. Biological complications were observed in 67 implants (14.86%), and technical complications were observed in 62 ISFDPs (29.81%). Analysis revealed only emergence profiles (over-contoured) as a significant risk factor for implant failure (P<0.001) and biological complications (P<0.001). Full-coverage ceramic-veneered zirconia prostheses had a significantly greater chance of chipping (P<0.001) compared with buccal-ceramic-veneered or monolithic zirconia prostheses. CONCLUSIONS: Screw-retained ceramic-veneered, monolithic partial ISFDPs have a favorable long-term survival rate. Over-contoured emergence profile is a significant risk factor associated with implant failure and biological complications. Buccal-ceramic-veneered and monolithic zirconia partial ISFDPs lower the initial prevalence of chipping compared with a full-coverage veneered design.


Subject(s)
Ceramics , Zirconium , Humans , Retrospective Studies , Crowns , Bone Screws , Dental Prosthesis, Implant-Supported/adverse effects , Dental Restoration Failure , Dental Porcelain , Denture, Partial, Fixed
13.
Clin Implant Dent Relat Res ; 26(1): 197-205, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37674300

ABSTRACT

OBJECTIVES: The main purpose of this retrospective study was to assess the difference in the incidence of peri-zygomatic complications (PZCs) when zygomatic implants (ZIs) penetrate or do not penetrate the external surface of zygoma. MATERIALS AND METHODS: This study included 32 patients with edentulous maxillae or potentially edentulous maxillae undergo zygomatic implantation. The patients were divided into the penetration group (P-group) and the non-penetration group (N-group) according to whether the apex of implants penetrated the external surface of zygoma in postoperative CBCT. The extension length, the penetration section of the implants, and the skin thickness at the corresponding position were simultaneously measured. Clinical follow-up was conducted regularly until 2 years after surgery. The occurrence of PZCs (including peri-zygomatic infection, skin numbness, non-infectious pain, and foreign body sensation) was recorded. A mixed effect logistic model was used to compare the difference of complication rate between the P-group and the N-group, and odds ratio (OR) was calculated. Then identify the impact of the extension length, penetration section and skin thickness in P-group with the same model. RESULTS: A total of 71 ZIs were implanted in 32 patients, including 37 implants in the P-group and 34 implants in the N-group. During the 2-year follow-up, a total of 13 implants occurred PZCs, with an overall complication rate of 18.3%. Thereinto, the incidence rate was 29.7% in the P-group, and 5.9% in the N-group (OR = 6.77). In P-group, there was a significant difference in complication rate of different extension lengths, while the penetration section and skin thickness had no statistical significance on the complication rate. CONCLUSION: Under the limitation of this study, to minimize the risk of PZCs, ZI should be placed in a manner that avoids the apex penetrating the external surface of the zygoma.


Subject(s)
Dental Implants , Jaw, Edentulous , Humans , Dental Implantation, Endosseous , Dental Implants/adverse effects , Retrospective Studies , Zygoma/surgery , Dental Prosthesis, Implant-Supported , Maxilla/surgery , Jaw, Edentulous/surgery , Follow-Up Studies
14.
CNS Neurosci Ther ; 30(2): e14363, 2024 02.
Article in English | MEDLINE | ID: mdl-37469216

ABSTRACT

AIMS: Acute kidney injury (AKI) has been associated with a variety of neurological problems, while the neurobiological mechanism remains unclear. In the present study, we utilized resting-state functional magnetic resonance imaging (rs-fMRI) to detect brain injury at an early stage and investigated the impact of microglia on the neuropathological mechanism of AKI. METHODS: Rs-fMRI data were collected from AKI rats and the control group with a 9.4-Tesla scanner at 24, 48, and 72 h post administration of contrast medium or saline. The amplitude of low-frequency fluctuations (ALFF) was then compared across the groups at each time course. Additionally, flow cytometry and SMART-seq2 were employed to evaluate microglia. Furthermore, pathological staining and Western blot were used to analyze the samples. RESULTS: MRI results revealed that AKI led to a decreased ALFF in the hippocampus, particularly in the 48 h and 72 h groups. Additionally, western blot suggested that AKI-induced the neuronal apoptosis at 48 h and 72 h. Flow cytometry and confocal microscopy images demonstrated that AKI activated the aggregation of microglia into neurons at 24 h, with a strong upregulation of M1 polarization at 48 h and peaking at 72 h, accompanying with the release of proinflammatory cytokines. The ALFF value was strongly correlated with the proportion of microglia (|r| > 0.80, p < 0.001). CONCLUSIONS: Our study demonstrated that microglia aggregation and inflammatory factor upregulation are significant mechanisms of AKI-induced neuronal apoptosis. We used fMRI to detect the alterations in hippocampal function, which may provide a noninvasive method for the early detection of brain injury after AKI.


Subject(s)
Acute Kidney Injury , Brain Injuries , Rats , Animals , Microglia , Hippocampus/diagnostic imaging , Apoptosis , Acute Kidney Injury/diagnostic imaging
15.
Biomed Chromatogr ; 38(3): e5801, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38110193

ABSTRACT

The cause of rheumatoid arthritis (RA) is unclear. Xiaohuoluo wan (XHLW) is a classical Chinese medicine that is particularly effective in the treatment of RA. Given the chemical composition of XHLW at the overall level has been little studied and the molecular mechanism for the treatment of RA is not clear, we searched for the potential active compounds of XHLW and explored their anti-inflammatory mechanism in the treatment of RA by flexibly integrating the high-resolution ultra-performance liquid chromatography-mass spectrometry (UPLC-MS)-based in vitro and in vivo chemomics, network pharmacology, and other means. The results of the study identified that the active compounds of XHLW, such as alkaloids, nucleosides, and fatty acids, may play an anti-inflammatory role by regulating key targets such as IL-2, STAT1, JAK3, and MAPK8, inducing immune response through IL-17 signaling pathway, T-cell receptor, FoxO, tumor necrosis factor (TNF), and so forth, inhibiting the release of inflammatory factors and resisting oxidative stress and other pathways to treat RA. The results of this study provide referable data for the screening of active compounds and the exploration of molecular mechanisms of XHLW in the treatment of RA.


Subject(s)
Arthritis, Rheumatoid , Drugs, Chinese Herbal , Humans , Network Pharmacology , Chromatography, Liquid , Tandem Mass Spectrometry , Arthritis, Rheumatoid/drug therapy , Anti-Inflammatory Agents/pharmacology , Drugs, Chinese Herbal/pharmacology
16.
Front Pharmacol ; 14: 1188893, 2023.
Article in English | MEDLINE | ID: mdl-37920210

ABSTRACT

Alzheimer's disease (AD) is an age-related neurodegenerative disease that progressively impairs cognitive function and memory. The occurrence and development of Alzheimer's disease involves many processes. In response to the complex pathogenesis of AD, the Traditional Chinese medicine formula Liuwei Dihuang Pill (LWD) has been shown to improve the cognitive function of AD animal models. However, the active ingredients and mechanism of action of LWD have not been fully elucidated. In this study, network pharmacological analysis predicted 40 candidate compounds in LWD, acting on 227 potential targets, of which 185 were associated with AD. Through network pharmacological analysis, the mechanism of action of LWD therapy AD is related to the inhibition of inflammatory response, regulation of neuronal state, and autophagy. In this experiment, LWD was detected in the APP/PS1 transgenic mouse model. The objective was to observe the effects of LWD on hippocampal learning and memory ability, Aß clearance, autophagy and inflammatory response in APP/PS1 mice. The results showed that LWD improved long-term memory and working memory in APP/PS1 mice compared with the WT group. At the same time, LWD can increase the expression of hippocampal autophagy biomarkers, reduce the precipitation of Aß, and the activation of microglia and astrocytes. Its mechanism may be related to the regulation of the PI3K/Akt signaling pathway. Thus, we demonstrate for the first time that LWD has a neuroprotective effect on APP/PS1 mice and provide theoretical foundation for the development of a new clinical treatment for AD.

17.
Eur J Med Res ; 28(1): 519, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37968748

ABSTRACT

OBJECTIVE: The primary objective of this study was to evaluate the efficacy and safety of pulsed field ablation in individuals diagnosed with atrial fibrillation. METHODS: A total of 36 patients diagnosed with atrial fibrillation were enrolled in the pulsed field ablation group, while another 36 patients diagnosed with atrial fibrillation were included in the radiofrequency ablation group. Among the study participants, 15 patients in the pulsed field ablation group and 17 patients in the radiofrequency ablation group had persistent atrial fibrillation. Comprehensive comparisons were made between the two groups, including baseline data, underlying diseases, medication usage, intraoperative parameters, and atrial fibrillation recurrence rates at 1, 3, and 6 months during the postoperative follow-up period. RESULTS: (1) There were no significant differences observed between the two groups concerning baseline data and antiarrhythmic drug usage (P > 0.05); (2) the effective ablation time for both left and right pulmonary veins in the pulsed field ablation group was markedly shorter compared to the radiofrequency ablation group (P < 0.001 for each vein); (3) within the pulsed field ablation group, the number of discharges, catheter operation time, and effective ablation time for the left pulmonary vein were significantly higher than those for the right pulmonary vein (P < 0.05). Conversely, in the radiofrequency ablation group, the number of discharges for the left pulmonary vein was significantly higher than that for the right pulmonary vein (P < 0.05); and (4) when comparing sinus rhythm maintenance at 1, 3, and 6 months postoperatively, no statistically significant differences were noted between the two groups for paroxysmal, persistent, and paroxysmal + persistent atrial fibrillation cases (P > 0.05). CONCLUSION: During the 6-month follow-up period, pulsed field ablation demonstrated comparable efficacy to radiofrequency ablation with respect to recurrence rates for both paroxysmal and persistent atrial fibrillation. Moreover, pulsed field ablation exhibited high safety levels, excellent surgical efficiency, and a notably brief learning curve, affirming its viability as a therapeutic option for these conditions.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Pulmonary Veins , Humans , Atrial Fibrillation/diagnosis , Case-Control Studies , Pulmonary Veins/surgery , Catheter Ablation/methods , Treatment Outcome , Recurrence
18.
Metabolites ; 13(10)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37887391

ABSTRACT

Circular RNA (circRNA) has been reported to be involved in the pathogenesis of cardiovascular disease; however, it is unclear whether circRNA carried by exosomes (exos) can be used as biomarkers for chronic coronary syndrome (CCS). High-throughput sequencing was carried out in the plasma exosomal RNA of 15 CCS patients and 15 non-cardiac chest pain patients (NCCP, control group) to screen for differentially expressed circRNAs. Selected differentially expressed exo-circRNAs were further verified by real-time polymerase chain reaction in a small-sample cohort and a large-sample cohort. A total of 276 circRNAs were differentially expressed in the plasma exosomes of CCS patients, with 103 up-regulated and 173 down-regulated. Among the 103 up-regulated circRNAs, 5 circRNAs with high expression levels were selected for validation. Real time quantitative PCR of the first and second validation cohort demonstrated that exo-hsa_circ_0075269 and exo-hsa_circ_0000284 were significantly up-regulated in patients with CCS. Circulating exo-hsa_circ_0075269 and exo-hsa_circ_0000284 yielded the area under the curve values of 0.761 (p < 0.001, 95%CI = 0.669, 0.852) and 0.623 (p = 0.015, 95%CI = 0.522, 0.724) for CCS, respectively, by ROC curve analysis. In conclusion, the expression profile of circRNA in plasma exosomes of patients with CCS was significantly different from that of the control group. Plasma exo-hsa_circ_0075269 and exo-hsa_circ_0000284 have the potential to be new biomarkers for CCS.

19.
Parkinsonism Relat Disord ; 115: 105802, 2023 10.
Article in English | MEDLINE | ID: mdl-37734997

ABSTRACT

PURPOSE: The neurobiological mechanisms and an early identification of MCI in idiopathic Parkinson's disease (IPD) remain unclear. To investigate the abnormalities of types of white matter (WM) fiber tracts segmentally and establish reliable indicator in IPD-MCI. METHODS: Forty IPD with normal cognition (IPD-NCI), thirty IPD-MCI, and thirty healthy controls were included. Automated fiber quantification was applied to extract the fractional anisotropy (FA) and mean diffusivity (MD) values at 100 locations along the major fibers. Partial correlation was performed between diffusion values and cognitive performance. Furthermore, machine learning analyses were conducted to determine the imaging biomarker of MCI. Permutation tests were performed to evaluate the pointwise differences under the FWE correction. RESULTS: IPD-MCI had similar but more severe and widespread WM degeneration in the association, projection, and commissural fibers compared with IPD-NCI. Meanwhile, IPD-MCI showed distinct degeneration pattern in the association fibers. The FA of the anterior segment of right inferior fronto-occipital fasciculus (IFOF) was positively correlated with MoCA (P < 0.05) and executive function (P < 0.05). The MD of the middle and posterior segment of left superior longitudinal fasciculus (SLF) was negatively correlated with MoCA P < 0.05), executive (P < 0.05), visuospatial function (P < 0.05). Furthermore, the AUC of support vector machine model was 0.80 in the validation dataset. The FA of anterior segment of right IFOF contribute the most. CONCLUSION: This study demonstrated that regional tract-specific microstructural degeneration, especially the association fibers, can be used to predict MCI in IPD. Especially, the right IFOF may be a significant imaging biomarker in predicting IPD with MCI.


Subject(s)
Cognitive Dysfunction , Parkinson Disease , White Matter , Humans , White Matter/diagnostic imaging , Diffusion Tensor Imaging/methods , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Anisotropy , Biomarkers , Brain/diagnostic imaging
20.
Sci Total Environ ; 905: 166916, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37696406

ABSTRACT

The process of the land-surface water cycle has undergone substantial changes as a result of climate change and human activities. Disclosing the evolution of the water cycle and its mechanisms in a changing environment is a challenging and hot issue in hydrological science research, which is essential for regional ecological protection and sustainable development. Based on the MIKE SHE/MIKE 11 model, multi-source data are used to simulate the water cycle change process in the Songnen Plain from 1980 to 2020. The study indicates that groundwater data inverted by GRACE and GLDAS data is relatively accurate, which effectively reflects the process of groundwater storage change in particular regions. Moreover, the surface-groundwater coupling model employs strongly correlated inverse groundwater data to simulate the water cycle change process in the Songnen Plain, yielding highly accurate simulation results. In terms of the impact of climate change and human activities on the water cycle process, climate change is the primary cause of changes in the regional water cycle, with contributions to actual evapotranspiration, surface runoff, and groundwater level of 77.04 %, 70.88 %, and 67.86 %, respectively. Nonetheless, as human activities intensify, their impact on the water cycle process progressively increases. From the perspective of the mechanism of water cycle change, the decrease in wetland area, the expansion of urban areas, and the increase in urban water demand are the primary causes of regional water cycle change between 1995 and 2010. The establishment of water conservation facilities and the dramatic increase in paddy field area are the primary causes of the water cycle change between 2011 and 2020. This study combines multi-source remote sensing data with hydrological models to simulate medium- and large-scale water cycle processes, providing new concepts and methods for examining water cycle processes in water-scarce areas.

SELECTION OF CITATIONS
SEARCH DETAIL
...